Bibliography

  • Adewale, C., S. Higgins, D. Granatstein, C. O. Stöckle, B. R. Carlson, U. E. Zaher, and L. Carpenter-Boggs, 2016, Identifying hotspots in the carbon footprint of a small scale organic vegetable farm: Agricultural Systems, v. 149, p. 112-121.
  • Adhya, T. K., B. Linquist, T. Searchinger, R. Wassmann, and X. Yan, 2014, Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving Water from Rice Production. (Working Paper), World Resources Institute.
  • Akpoti, K., A. T. Kabo-bah, and S. J. Zwart, 2019, Review – Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis: Agricultural Systems, v. 173, p. 172-208.
  • Begum, K., M. Kuhnert, J. B. Yeluripati, S. M. Ogle, W. J. Parton, S. A. Williams, G. Pan, K. Cheng, M. A. Ali, and P. Smith, 2019, Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh: Geoderma, v. 341, p. 206-215.
  • Bellarby, J., B. Foereid, A. F. S. J. Hastings, and P. Smith, 2008, Cool Farming: Climate impacts of agriculture and mitigation potential., Amsterdam, Netherlands, Greenpeace International.
  • Carrijo, D. R., M. E. Lundy, and B. A. Linquist, 2017, Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis: Field Crops Research, v. 203, p. 173-180.
  • CGIAR, R. P. o. C., 2016, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
  • Colomb, V., M. Bernoux, L. Bockel, J.-L. Chotte, S. Martin, C. Martin-Phipps, J. Mousset, M. Tinlot, and O. Touchemoulin, 2012, Review of GHG Calculators in Agriculture and Forestry Sectors: A Guideline for Appropriate Choice and Use of Landscape Based Tools.
  • Colomb, V., O. Touchemoulin, L. Bockel, J.-L. Chotte, S. Martin, M. Tinlot, and M. Bernoux, 2013, Selection of appropriate calculators for landscape-scale greenhouse gas assessment for agriculture and forestry: Environmental Research Letters, v. 8, p. 015029.
  • Denef, K., K. Paustuan, s. Archibeque, S. Biggar, and D. Pape, 2012, Report of Greenhouse Gas Accounting Tools for Agriculture and Forestry Sectors. Interim report to USDA under Contract No. GS23F8182H.
  • El Baroudy, A. A., 2016, Mapping and evaluating land suitability using a GIS-based model: CATENA, v. 140, p. 96-104.
  • Feliciano, D., D. R. Nayak, S. H. Vetter, and J. Hillier, 2017, CCAFS-MOT – A tool for farmers, extension services and policy-advisors to identify mitigation options for agriculture: Agricultural Systems, v. 154, p. 100-111.
  • Fertitta-Roberts, C., P. Y. Oikawa, and G. Darrel Jenerette, 2019, Evaluating the GHG mitigation-potential of alternate wetting and drying in rice through life cycle assessment: Science of The Total Environment, v. 653, p. 1343-1353.
  • Hafeez, M., J. Bundschuh, and S. Mushtaq, 2014, Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems: Applied Energy, v. 114, p. 889-900.
  • Harvey, C. A., M. Chacón, C. I. Donatti, E. Garen, L. Hannah, A. Andrade, L. Bede, D. Brown, A. Calle, J. Chará, C. Clement, E. Gray, M. H. Hoang, P. Minang, A. M. Rodríguez, C. Seeberg-Elverfeldt, B. Semroc, S. Shames, S. Smukler, E. Somarriba, E. Torquebiau, J. Etten, and E. Wollenberg, 2013, Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture: Conservation Letters, v. 7, p. 77-90.
  • Heilig, G.K. Popul Environ (1994) 16: 109. https://doi.org/10.1007/BF02208779
  • IFPRI., and IFIAD., 2012, Reduction of Greenhouse Gas Emissions in Vietnam to Improve Lives of Rural Farmers.: Hanoi, Washington, D.C. USA.
  • IRRI, 2009, Saving water: alternate wetting and drying (AWD). IRRI Rice Fact Sheet. , Los Baños, Philippines: International Rice Research Institute (IRRI).
  • Janz, B., S. Weller, D. Kraus, H. S. Racela, R. Wassmann, K. Butterbach-Bahl, and R. Kiese, 2019, Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments: Agriculture, Ecosystems & Environment, v. 270-271, p. 41-54.
  • Kieran, C., and C. Doss, March, 2016, Celebrating Pi Day: What pie charts can tell us about gender gaps in control over land.
  • Kontgis, C., A. Schneider, M. Ozdogan, C. Kucharik, V. P. D. Tri, N. H. Duc, and J. Schatz, 2019, Climate change impacts on rice productivity in the Mekong River Delta: Applied Geography, v. 102, p. 71-83.
  • Lagomarsino, A., A. Elio Agnelli, B. Linquist, M. Adviento-Borbe, A. Agnelli, G. Gavina, S. Ravaglia, and R. Ferrara, 2016, Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy, v. 26, 533-548 p.
  • LaHue, G. T., R. L. Chaney, M. A. Adviento-Borbe, and B. A. Linquist, 2016, Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives: Agriculture, Ecosystems & Environment, v. 229, p. 30-39.
  • Lampayan, R. M., R. M. Rejesus, G. R. Singleton, and B. A. M. Bouman, 2015, Adoption and economics of alternate wetting and drying water management for irrigated lowland rice: Field Crops Research, v. 170, p. 95-108.
  • Lipper, L., P. Thornton, B. M. Campbell, T. Baedeker, A. Braimoh, M. Bwalya, P. Caron, A. Cattaneo, D. Garrity, K. Henry, R. Hottle, L. Jackson, A. Jarvis, F. Kossam, W. Mann, N. McCarthy, A. Meybeck, H. Neufeldt, T. Remington, and E. F. Torquebiau, 2015, Climate-smart agriculture for food security (vol 4, pg 1068, 2014), v. 5, 386-386 p.
  • Maclean, J., B. Hardy, and G. Hettel, 2013, Rice Almanac, Fourth Edition., International Rice Research Institute (IRRI).
  • Malczewski, J., 2004, GIS-based land-use suitability analysis: a critical overview: Progress in Planning, v. 62, p. 3-65.
  • Maraseni, T. N., R. C. Deo, J. Qu, P. Gentle, and P. R. Neupane, 2018, An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production: Journal of Cleaner Production, v. 172, p. 2288-2300.
  • Mazahreh, S., M. Bsoul, and D. A. Hamoor, 2019, GIS approach for assessment of land suitability for different land use alternatives in semi arid environment in Jordan: Case study (Al Gadeer Alabyad-Mafraq): Information Processing in Agriculture, v. 6, p. 91-108.
  • Milne, E., H. Neufeldt, T. Rosenstock, M. Smalligan, C. E. Cerri, D. Malin, M. Easter, M. Bernoux, S. Ogle, F. Casarim, T. Pearson, D. N. Bird, E. Steglich, M. Ostwald, K. Denef, and K. Paustian, 2013, Methods for the quantification of GHG emissions at the landscape level for developing countries in smallholder contexts: Environmental Research Letters, v. 8, p. 015019.
  • Mushtaq, S., T. N. Maraseni, and K. Reardon-Smith, 2013, Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology: Agricultural Systems, v. 117, p. 78-89.
  • Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lanarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang, 2013, Anthropogenic and Natural Radiative Forcing., in T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Nelson, A., R. Wassmann, B. O. Sander, and L. K. Palao, 2015, Climate-Determined Suitability of the Water Saving Technology “Alternate Wetting and Drying” in Rice Systems: A Scalable Methodology demonstrated for a Province in the Philippines: PLOS ONE, v. 10, p. e0145268.
  • Nguyen Duc, K., T. Ancev, and A. Randall, 2019, Evidence of climatic change in Vietnam: Some implications for agricultural production: Journal of Environmental Management, v. 231, p. 524-545.
  • Nguyen, T., F. Roehrig, G. Grosjean, D. Tran, and T. Vu, 2017, Climate Smart Agriculture in Vietnam. CSA Country Profiles for Asia Series., Hanoi, Vietnam. , International Center for Tropical Agriculture (CIAT); The Food and Agriculture Organization. , p. 28p.
  • Oo, A. Z., L. Nguyen, K. T. Win, G. Cadisch, and S. D. Bellingrath-Kimura, 2013, Toposequential variation in methane emissions from double-cropping paddy rice in Northwest Vietnam: Geoderma, v. 209-210, p. 41-49.
  • Oo, A. Z., S. Sudo, K. Inubushi, M. Mano, A. Yamamoto, K. Ono, T. Osawa, S. Hayashida, P. K. Patra, Y. Terao, P. Elayakumar, K. Vanitha, C. Umamageswari, P. Jothimani, and V. Ravi, 2018, Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India: Agriculture, Ecosystems & Environment, v. 252, p. 148-158.
  • Pandey, A., V. T. Mai, D. Q. Vu, T. P. L. Bui, T. L. A. Mai, L. S. Jensen, and A. de Neergaard, 2014, Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam: Agriculture, Ecosystems & Environment, v. 196, p. 137-146.
  • Pannell, D.J. (1997). Sensitivity analysis of normative economic models: Theoretical framework and practical strategies, Agricultural Economics 16: 139-152.
  • Partey, S. T., R. B. Zougmoré, M. Ouédraogo, and B. M. Campbell, 2018, Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt: Journal of Cleaner Production, v. 187, p. 285-295.
  • Paul, B. K., R. Frelat, C. Birnholz, C. Ebong, A. Gahigi, J. C. J. Groot, M. Herrero, D. M. Kagabo, A. Notenbaert, B. Vanlauwe, and M. T. van Wijk, 2018, Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs: Agricultural Systems, v. 163, p. 16-26.
  • Paustian, K., J. Lehmann, S. Ogle, D. Reay, G. P. Robertson, and P. Smith, 2016, Climate-smart soils, v. 532, 49-57 p.
  • Peter, C., K. Helming, and C. Nendel, 2017, Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators: Renewable and Sustainable Energy Reviews, v. 67, p. 461-476.
  • Richards, M., 2018, Measure the Chain: Tools for Assessing GHG Emissions in Agricultural Supply Chains., Ceres CGIAR.
  • Richards, M., and B. O. Sander, 2014, Alternate wetting and drying in irrigated rice: Implementation guidance for policy makers and investors (Practice Brief), CCAFS IRRI.
  • Rodenburg, J., S. J. Zwart, P. Kiepe, L. T. Narteh, W. Dogbe, and M. C. S. Wopereis, 2014, Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches: Agricultural Systems, v. 123, p. 1-11.
  • Rothenberg, S. E., M. Anders, N. J. Ajami, J. F. Petrosino, and E. Balogh, 2016, Water management impacts rice methylmercury and the soil microbiome: Science of The Total Environment, v. 572, p. 608-617.
  • Sander, B. O., M. Samson, and R. J. Buresh, 2014, Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops: Geoderma, v. 235-236, p. 355-362.
  • Sander, B. O., R. Wassmann, L. K. Palao, and A. Nelson, 2017, Climate-based suitability assessment for alternate wetting and drying water management in the Philippines: a novel approach for mapping methane mitigation potential in rice production: Carbon Management, v. 8, p. 331-342.
  • Seebauer, M., and G. Wathum, 2018, Testing of tools for calculating GHG emissions from agriculture in the “Adaptation of Agricul-ture to Climate Change” project in Namibia.
  • Tariq, A., A. de Neergaard, L. S. Jensen, B. O. Sander, M. V. Trinh, Q. D. Vu, R. Wassmann, and S. de Tourdonnet, 2018a, Co-design and assessment of mitigation practices in rice production systems: A case study in northern Vietnam: Agricultural Systems, v. 167, p. 72-82.
  • Tariq, A., L. S. Jensen, S. de Tourdonnet, B. O. Sander, and A. de Neergaard, 2017a, Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils: Geoderma, v. 304, p. 49-58.
  • Tariq, A., L. S. Jensen, B. O. Sander, S. de Tourdonnet, P. L. Ambus, P. H. Thanh, M. V. Trinh, and A. de Neergaard, 2018b, Paddy soil drainage influences residue carbon contribution to methane emissions: Journal of Environmental Management, v. 225, p. 168-176.
  • Tariq, A., Q. D. Vu, L. S. Jensen, S. de Tourdonnet, B. O. Sander, R. Wassmann, T. Van Mai, and A. de Neergaard, 2017b, Mitigating CH4 and N2O emissions from intensive rice production systems in northern Vietnam: Efficiency of drainage patterns in combination with rice residue incorporation: Agriculture, Ecosystems & Environment, v. 249, p. 101-111.
  • Tilman, D., C. Balzer, J. Hill, and B. L. Befort, 2011, Global food demand and the sustainable intensification of agriculture: Proceedings of the National Academy of Sciences, v. 108, p. 20260.
  • van der Hoek, W., R. Sakthivadivel, M. Renshaw, J. B. Silver, M. H. Birley, and F. Konradsen, 2001, Alternate wet/dry irrigation in rice cultivation: a practical way to save water and control malaria and Japanese encephalitis?, Colombo, Sri Lanka, International Water Management Institute (IWMI), p. 30.
  • Vermeulen, S. J., B. M. Campbell, and J. S. I. Ingram, 2012, Climate Change and Food Systems: Annual Review of Environment and Resources, v. 37, p. 195-222.
  • Vial, L. K., 2007, Aerobic and Alternate-Wet-and-Dry (AWD) Systems, Nuffield Australia, Nuffield Australia Farming Scholars.
  • Vietnam., G. o. t. S. R. o., 2015, Intended Nationally Determined Contribution of Viet Nam (Revised).
  • Wassmann, R., R. Pasco, J. Zerrudo, D. M. Ngo, T. B. T. Vo, and B. O. Sander, 2019, Introducing a new tool for greenhouse gas calculation tailored for cropland: rationale, operational framework and potential application: Carbon Management, v. 10, p. 79-92.