Saltzman, A., Birol, E., Oparinde, A., Andersson, M. S., Asare-Marfo, D., Diressie, M. T., Gonzalez, C., Lividini, K., Moursi, M., & Zeller, M. 2017. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci, 1390(1): 104-114.

Guinee, J. B. 2002. Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7(5): 311.

Lienhardt, T., Black, K., Saget, S., Costa, M. P., Chadwick, D., Rees, R., Williams, M., Spillane, C., Iannetta, P., Walker, G., & Styles, D. 2019. Data for life cycle assessment of legume biorefining for alcohol. Data Brief, 25: 104242.

Gaglio, M., Tamburini, E., Lucchesi, F., Aschonitis, V., Atti, A., Castaldelli, G., & Fano, A. 2019. Life Cycle Assessment of Maize-Germ Oil Production and The Use of Bioenergy to Mitigate Environmental Impacts: A Gate-To-Gate Case Study. Resources, 8: 60.

Bennett, R., Phipps, R., & Strange, A. 2006. The use of life cycle assessment to compare the environmental impact of production and feeding of conventional and genetically modified maize for broiler production in Argentina. Journal of Animal and Feed Sciences, 15: 71-82.

Boone, L., Van linden, V., De Meester, S., Vandecasteele, B., Muylle, H., Roldán-Ruiz, I., Nemecek, T., & Dewulf, J. 2016. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553: 551-564.

Bouis, H. E. 2018. Chapter 7 – Biofortification: An Agricultural Tool to Address Mineral and Vitamin Deficiencies. In M. G. V. Mannar, & R. F. Hurrell (Eds.), Food Fortification in a Globalized World: 69-81: Academic Press.

Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. 2011. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 32(1 Suppl): S31-40.

Glahn, R., Wiesinger, J., & Lung’aho, M. 2020. Iron Biofortification of the Common Bean: Assessment of Bean Iron Concentration and Iron Bioavailability from Markets and Breeder Collections in East Africa. Current Developments in Nutrition, 4(Supplement_2): 1803-1803.

SAIIA. 2016. The Maize Value Chain in Tanzania https://saiia.org.za/saiia-toolkit/the-maize-value-chain-in-tanzania/ accessed 14.07.2020.

Tanzania, U. R. o. 2020. National Biofortification Guidelines. Ministry of Agriculture, January 2020.

TBS. 2019. Biofortified maize (corn) grains – Specification https://members.wto.org/crnattachments/2019/TBT/TZA/19_3485_00_e.pdf viewed 03.07.2020.

TBS. 2020. Draft Biofortified dry beans – Specification http://www.tbs.go.tz/images/uploads/AFDC_16_(6175)_P3.pdf viewed 03.07.2020.

Dalberg. 2019a. Commercialization assessment: High Iron Beans in Tanzania, F I N A L R E P O R T F O R G A I N  A N D H A R V E S T P L U S.

Dalberg. 2019b. Commercialization assessment: PVA Maize in Tanzania, FINAL REPORT FOR GAIN AND HARVESTPLUS.

Rubyogo J.C, L. a. M. O. J. B. P. M. M. Z., E; Shida N; Msaky J; Kadege E; Birachi B; Mutua M; Nyakundi F; Kalemera S.  . 2019. Consumer acceptance of and willingness to pay for high-iron beans in northern Tanzania. Nairobi (Kenya): International Center for Tropical Agriculture (CIAT); Tanzania Agricultural Research Institute (TARI). Arusha, Tanzania. 60 p. Available at: https://hdl.handle.net/10568/105881.

Mulongo, G. M., H. ; Maru, J.; Mnzava, M.; Kasuga, R.; Olapeju, P. . 2017. Situational analysis report for biofortification and biofortified crops in Tanzania. Nairobi (Kenya). International Potato Center (CIP).

Lewis, R. T. W. J. 2015. The Maize Value Chain in Tanzania, A report from the Southern Highlands  Food Systems Programme.

Styles, D., Adams, P., Thelin, G., Vaneeckhaute, C., Chadwick, D., & Withers, P. J. A. 2018a. Life Cycle Assessment of Biofertilizer Production and Use Compared with Conventional Liquid Digestate Management. Environmental Science & Technology, 52(13): 7468-7476.

Styles, D., Gonzalez-Mejia, A., Moorby, J., Foskolos, A., & Gibbons, J. 2018b. Climate mitigation by dairy intensification depends on intensive use of spared grassland. Global Change Biology, 24(2): 681-693.

Lienhardt, T., Black, K., Saget, S., Costa, M. P., Chadwick, D., Rees, R., Williams, M., Spillane, C., Iannetta, P., Walker, G., & Styles, D. 2019a. Data for life cycle assessment of legume biorefining for alcohol. Data in Brief, 25: 104242.

Lienhardt, T., Black, K., Saget, S., Costa, M. P., Chadwick, D., Rees, R. M., Williams, M., Spillane, C., Iannetta, P. M., Walker, G., & Styles, D. 2019b. Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe’s protein deficit and mitigate climate change. Environment International, 130: 104870.

Dooren, C. 2016. Proposing the Nutrient Density Unit as the Functional Unit in LCAs of Foods.

Saget, S., Costa, M., Barilli, E., Wilton de Vasconcelos, M., Santos, C. S., Styles, D., & Williams, M. 2020. Substituting wheat with chickpea flour in pasta production delivers more nutrition at a lower environmental cost. Sustainable Production and Consumption, 24: 26-38.

Muzhingi, T., Yeum, K.-J., Russell, R., Johnson, E., Qin, J., & Tang, G. 2008. Determination of Carotenoids in Yellow Maize, the Effects of Saponification and Food Preparations. International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition, 78: 112-120.

Myers, S., Smith, M., Guth, S., Golden, C., Vaitla, B., Mueller, N., Dangour, A., & Huybers, P. 2017. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annual Review of Public Health, 38.

Myers, S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A., Bloom, A., Carlisle, E., Dietterich, L., Fitzgerald, G., Hasegawa, T., Holbrook, N., Nelson, R., Ottman, M., Raboy, V., Sakai, H., Sartor, K., Schwartz, J., Seneweera, S., Tausz, M., & Usui, Y. 2014. Increasing CO2 threatens human nutrition. Nature, 510.

Mugode, L., Ha, B., Kaunda, A., Sikombe, T., Phiri, S., Mutale, R., Davis, C., Tanumihardjo, S., & De Moura, F. F. 2014. Carotenoid retention of biofortified provitamin A maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage. Journal of Agricultural and Food Chemistry, 62(27): 6317-6325.

Glahn, R. P., Wiesinger, J. A., & Lung’aho, M. G. 2020c. Iron Concentrations in Biofortified Beans and Nonbiofortified Marketplace Varieties in East Africa Are Similar. The Journal of Nutrition.

Glahn, R., Cichy, K., & Wiesinger, J. 2020a. On-Farm Evaluation in Uganda of Iron Concentration and Iron Bioavailability in the Fast Cooking Manteca Yellow Bean (Phaseolus vulgaris L.). Current Developments in Nutrition, 4(Supplement_2): 1804-1804.

de la Parra, C., Serna Saldivar, S. O., & Liu, R. H. 2007. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. Journal of Agricultural and Food Chemistry, 55(10): 4177-4183.

De Moura, F. F., Miloff, A., & Boy, E. 2015. Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa: Cassava, Maize and Sweet Potato. Critical Reviews in Food Science and Nutrition, 55(9): 1246-1269.

Hummel, M., Hallahan, B. F., Brychkova, G., Ramirez-Villegas, J., Guwela, V., Chataika, B., Curley, E., McKeown, P. C., Morrison, L., & Talsma, E. F. 2018. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Scientific reports, 8(1): 1-11.

Hummel, M., Talsma, E. F., Taleon, V., Londoño, L., Brychkova, G., Gallego, S., Raatz, B., & Spillane, C. 2020. Iron, zinc and phytic acid retention of biofortified, low phytic acid, and conventional bean varieties when preparing common household recipes. Nutrients, 12(3): 658.